Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618956

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Rim , Neoplasias Renais/genética , Microambiente Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
EMBO J ; 43(6): 931-955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360997

RESUMO

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Assuntos
Proteína Beclina-1 , Carcinoma de Células Renais , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hidroxilação , Neoplasias Renais/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
J Investig Med High Impact Case Rep ; 12: 23247096241231641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344974

RESUMO

The Von-Hippel-Lindau (VHL) gene, acting as a tumor suppressor, plays a crucial role in the tumorigenesis of clear cell renal cell carcinoma (ccRCC). Approximately 90% of individuals with advanced ccRCC exhibit somatic mutations in the VHL gene. Belzutifan, orally administered small-molecule inhibitor of hypoxia-induced factor-2α, has demonstrated promising efficacy in solid tumors associated with germline loss-of-function mutations in VHL, including ccRCC. However, its impact on cases with somatic or sporadic VHL mutations remains unclear. Here, we present 2 cases where belzutifan monotherapy was employed in patients with advanced ccRCC and somatic loss-of-function mutations in VHL. Both patients exhibited a swift and sustained response, underscoring the potential role of belzutifan as a viable option in second or subsequent lines of therapy for individuals with somatic VHL mutations. Despite both patients experiencing a pulmonary crisis with respiratory compromise, their rapid response to belzutifan further emphasizes its potential utility in cases involving pulmonary or visceral crises. This report contributes valuable insights into the treatment landscape for advanced ccRCC with somatic VHL mutations.


Assuntos
Carcinoma de Células Renais , Carcinoma , Indenos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mutação
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396737

RESUMO

In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
5.
Proc Natl Acad Sci U S A ; 121(7): e2310479121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335255

RESUMO

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Gotículas Lipídicas , Proteínas Proto-Oncogênicas c-myc , Humanos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias Renais/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257395

RESUMO

Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.


Assuntos
Autofagia , Ciclopropanos , Macroautofagia , Pirrolidinas , Tiazóis , Humanos , Células HeLa , Homeostase , Proteína Supressora de Tumor Von Hippel-Lindau/genética
7.
Biochem Biophys Res Commun ; 690: 149250, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039781

RESUMO

The von Hippel-Lindau protein (pVHL) is a tumor suppressor involved in oxygen regulation via dynamic nucleocytoplasmic shuttling. It plays a crucial role in cell survival by degrading hypoxia-inducible factors (HIFs). Mutations in the VHL gene cause angiogenic tumors, characterized as VHL syndrome. However, aggressive tumors involving wild-type pVHL have also been described but the underlying mechanism remains to be revealed. We have previously shown that pVHL possesses several short amyloid-forming motifs, making it aggregation-prone. In this study, using a series of biophysical assays, we demonstrated that a pVHL-derived fragment (pVHL104-140) that harbors the nuclear export motif and HIF binding site, forms amyloid-like fibrillar structures in vitro by following secondary-nucleation-based kinetics. The peptide also formed amyloids at acidic pH that mimics the tumor microenvironment. We, subsequently, validated the amyloid formation by pVHL in vitro. Using the Curli-dependent amyloid generator (C-DAG) expression system, we confirmed the amyloidogenesis of pVHL in bacterial cells. The pVHL amyloids are an attractive target for therapeutics of the VHL syndrome. Accordingly, we demonstrated in vitro that Purpurin is a potent inhibitor of pVHL fibrillation. The amyloidogenic behavior of wild-type pVHL and its inhibition provide novel insights into the molecular underpinning of the VHL syndrome and its possible treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Doença de von Hippel-Lindau/genética , Fatores de Transcrição/metabolismo , Carcinoma de Células Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Genes Supressores de Tumor , Proteínas Amiloidogênicas/genética , Neoplasias Renais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Microambiente Tumoral
8.
Semin Diagn Pathol ; 41(1): 20-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980175

RESUMO

von Hippel-Lindau (VHL) disease is characterized by biallelic inactivation of the VHL gene leading to abnormal or absent VHL protein function, and constitutive activation of hypoxia-inducible factors (HIF) that leads to pro-tumorigenic signaling. Individuals with VHL disease develop numerous cysts and tumors involving multiple organs including the kidneys, central nervous system, endolymphatic sac, lungs, pancreatobiliary system, adrenal glands, epididymis, and/or broad ligament. On histologic examination, these lesions show morphologic overlap as they are frequently characterized by cells with clear cytoplasm and prominent vascularity. In addition to distinguishing non-renal tumors from metastatic clear cell renal cell carcinoma, understanding site-specific histopathologic and immunophenotypic features of these tumors has several applications. This includes distinguishing VHL-related tumors from those that arise sporadically and lack VHL gene alterations, guiding further genetic workup, and helping distinguish between different genetic predisposition syndromes. In this context, immunohistochemical studies for markers such as paired box 8 (PAX-8), carbonic anhydrase 9 (CA9), and glucose transporter 1 (GLUT-1) have an important role in routine clinical practice and represent cost-effective diagnostic tools. The recent development of targeted therapeutics directed against HIF-mediated signaling represents a significant milestone in the management of VHL disease and highlights the importance of accurately diagnosing and characterizing the wide spectrum of VHL disease-associated lesions.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Masculino , Feminino , Humanos , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/diagnóstico , Doença de von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Rim/patologia
9.
Hum Mol Genet ; 33(3): 224-232, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37883464

RESUMO

BACKGROUND: Mutations within the Von Hippel-Lindau (VHL) tumor suppressor gene are known to cause VHL disease, which is characterized by the formation of cysts and tumors in multiple organs of the body, particularly clear cell renal cell carcinoma (ccRCC). A major challenge in clinical practice is determining tumor risk from a given mutation in the VHL gene. Previous efforts have been hindered by limited available clinical data and technological constraints. METHODS: To overcome this, we initially manually curated the largest set of clinically validated VHL mutations to date, enabling a robust assessment of existing predictive tools on an independent test set. Additionally, we comprehensively characterized the effects of mutations within VHL using in silico biophysical tools describing changes in protein stability, dynamics and affinity to binding partners to provide insights into the structure-phenotype relationship. These descriptive properties were used as molecular features for the construction of a machine learning model, designed to predict the risk of ccRCC development as a result of a VHL missense mutation. RESULTS: Analysis of our model showed an accuracy of 0.81 in the identification of ccRCC-causing missense mutations, and a Matthew's Correlation Coefficient of 0.44 on a non-redundant blind test, a significant improvement in comparison to the previous available approaches. CONCLUSION: This work highlights the power of using protein 3D structure to fully explore the range of molecular and functional consequences of genomic variants. We believe this optimized model will better enable its clinical implementation and assist guiding patient risk stratification and management.


Assuntos
Aprendizado de Máquina , Mutação de Sentido Incorreto , Doença de von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Mutação de Sentido Incorreto/genética , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
10.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072043

RESUMO

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinoma de Células Renais , Fator 3-beta Nuclear de Hepatócito , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Progressão da Doença
11.
Zhonghua Bing Li Xue Za Zhi ; 52(12): 1230-1236, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38058039

RESUMO

Objective: To explore the potential pathogenesis of clear cell renal cell carcinoma (ccRCC) based on the HIF-1α/ACLY signaling pathway, as well as to provide new ideas for the treatment of ccRCC. Methods: Seventy-eight ccRCC cases diagnosed at the First Affiliated Hospital of Soochow University, Suzhou, China were collected. The VHL mutation was examined using exon sequencing. The expression of HIF-1α/ACLY in VHL-mutated ccRCC was evaluated using immunohistochemical staining and further validated in VHL-mutated ccRCC cell lines (786-O, A498, UM-RC-2, SNU-333, and Caki-2) using Western blot. The mRNA and protein levels of ACLY were detected using real-time quantitative PCR and Western blot after overexpression or interference with HIF-1α in ccRCC cell lines. HeLa cells were treated with CoCl2 and hypoxia (1%O2) to activate HIF-1α and then subject to the detection of the ACLY mRNA and protein levels. The potential molecular mechanism of HIF-1α-induced ACLY activation was explored through JASPAR database combined with chromatin immunoprecipitation assay (ChIP) and luciferase reporter gene assay. The effect of HIF-1α/ACLY regulation axis on lipid accumulation was detected using BODIPY staining and other cell biological techniques. The expression of ACLY was compared between patients with ccRCC and those with benign lesions, and the feasibility of ACLY as a prognostic indicator for ccRCC was explored through survival analysis. Results: Exon sequencing revealed that 55 (70.5%) of the 78 ccRCC patients harbored a VHL inactivation mutation, and HIF-1α expression was associated with ACLY protein levels. The protein levels of ACLY and HIF-1α in ccRCC cell lines carrying VHL mutation were also correlated to various degrees. Overexpression of HIF-1α in A498 cells increased the mRNA and protein levels of ACLY, and knockdown of HIF-1α in Caki-2 cells inhibited the mRNA and protein levels of ACLY (P<0.001 for all). CoCl2 and hypoxia treatment significantly increased the mRNA and protein levels of ACLY by activating HIF-1α (P<0.001 for all). The quantification of transcriptional activity of luciferase reporter gene and ChIP-qPCR results suggested that HIF-1α could directly bind to ACLY promoter region to transcriptionally activate ACLY expression and increase ACLY protein level (P<0.001 for all). The results of BODIPY staining suggested that the content of free fatty acids in cell lines was associated with the levels of HIF-1α and ACLY. The depletion of HIF-1α could effectively reduce the accumulation of lipid in cells, while the overexpression of ACLY could reverse this process. At the same time, cell function experiments showed that the proliferation rate of ccRCC cells with HIF-1α knockdown was significantly decreased, and overexpression of ACLY could restore proliferation of these tumor cells (P<0.001). Survival analysis further showed that compared with the ccRCC patients with low ACLY expression, the ccRCC patients with high ACLY expression had a poorer prognosis and a shorter median survival (P<0.001). Conclusions: VHL mutation-mediated HIF-1α overexpression in ccRCC promotes lipid synthesis and tumor progression by activating ACLY. Targeting the HIF-1α/ACLY signaling axis may provide a theoretical basis for the clinical diagnosis and treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Células HeLa , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Mutação , Transdução de Sinais , Luciferases/genética , Luciferases/metabolismo , Luciferases/uso terapêutico , Hipóxia/genética , RNA Mensageiro , Lipídeos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
12.
Medicine (Baltimore) ; 102(50): e36540, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115281

RESUMO

Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. The von Hippel-Lindau (VHL) tumor suppressor gene play an essential role in the tumorigenic pathway of clear cell RCC (ccRCC). This study was aimed to clarify the influence of VHL polymorphisms on ccRCC susceptibility and survival in Central European population. We genotyped 2 single-nucleotide polymorphisms (SNPs) rs779805 and rs1642742 in VHL gene and assessed their associations with ccRCC risk, clinicopathologic parameters, and prognosis in 171 cases. The selected SNPs were genotyped by ROCHE LifeCycler 96 using tumor tissue-derived DNA. Both SNPs do not directly influence ccRCC susceptibility and overall survival. A significant associations were found between allele G and genotypes AG and GG of rs779805 in the VHL tumor suppressor gene and increased tumor size, as well as high nuclear grade. Furthermore, a statistically significant association was observed between rs1642742 of VHL gene and low pathological tumor stage and between rs779805 of VHL gene and high pathological tumor stage. Both investigated SNPs can be important prognostic indicators of RCC in the Central European population, because statistically significant associations were observed between evaluated VHL polymorphisms and the best known factors with proven prognostic significance in kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/genética , Prognóstico , Genótipo , DNA
13.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139136

RESUMO

Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.


Assuntos
Carcinoma de Células Renais , Exossomos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Exossomos/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
14.
Eur J Med Chem ; 261: 115857, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37852032

RESUMO

Although several covalent KRASG12C inhibitors have made great progress in the treatment of KRASG12C-mutant cancer, their clinical applications are limited by adaptive resistance, motivating novel therapeutic strategies. Through drug design and structure optimization, a series of highly potent and selective KRASG12C Proteolysis Targeting Chimeras (PROTACs) were developed by incorporating AMG510 and VHL ligand VH032. Among them, degrader YN14 significantly inhibited KRASG12C-dependent cancer cells growth with nanomolar IC50 and DC50 values, and > 95 % maximum degradation (Dmax). Molecular dynamics (MD) simulation showed that YN14 induced a stable KRASG12C: YN14: VHL ternary complex with low binding free energy (ΔG). Notably, YN14 led to tumor regression with tumor growth inhibition (TGI%) rates more than 100 % in the MIA PaCa-2 xenograft model with well-tolerated dose-schedules. We also found that KRASG12C degradation exhibited advantages in overcoming adaptive KRASG12C feedback resistance over KRASG12C inhibition. Furthermore, combination of RTKs, SHP2, or CDK9 inhibitors with YN14 exhibited synergetic efficacy in KRASG12C-mutant cancer cells. Overall, these results demonstrated that YN14 holds exciting prospects for the treatment of tumors with KRASG12C-mutation and boosted efficacy could be achieved for greater clinical applications via drug combination.


Assuntos
Neoplasias , Quimera de Direcionamento de Proteólise , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Mutação , Citoplasma , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
Cancer Treat Rev ; 121: 102645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879247

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, affecting hundreds of thousands of people worldwide and can affect people of any age. The pathogenesis of ccRCC is most commonly due to biallelic loss of the tumor suppressor gene VHL. VHL is the recognition subunit of an E3-ubiquitin-ligase-complex essential for degradation of the hypoxia-inducible factors (HIF) 1α and 2α. Dysfunctional degradation of HIF results in overaccumulation, which is particularly concerning with the HIF2α subunit. This leads to nuclear translocation, dimerization, and transactivation of numerous HIF-regulated genes responsible for cell survival and proliferation in ccRCC. FDA-approved therapies for RCC have primarily focused on targeting downstream effectors of HIF, then incorporated immunotherapeutics, and now, novel approaches are moving back to HIF with a focus on interfering with upstream targets. This review summarizes the role of HIF in the pathogenesis of ccRCC, novel HIF2α-focused therapeutic approaches, and opportunities for ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral
16.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850636

RESUMO

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase , Hipóxia , Humanos , Genes Supressores de Tumor , Histona-Lisina N-Metiltransferase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
17.
Cancer Discov ; 13(12): OF5, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37870972

RESUMO

In the LITESPARK-005 and -003 trials, the HIF-2α inhibitor looks effective in advanced clear-cell renal cell carcinoma, both as monotherapy and in combination with VEGFR tyrosine kinase inhibitors. The results favor expanding belzutifan's use beyond von Hippel-Lindau disease-associated cancers, its only current indication.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
18.
Cell Death Dis ; 14(10): 680, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833251

RESUMO

Nephrolithiasis is highly prevalent and associated with the increased risk of kidney cancer. The tumor suppressor von Hippel-Lindau (VHL) is critical for renal cancer development, however, its role in kidney stone disease has not been fully elucidated until now. Here we reported VHL expression was upregulated in renal epithelial cells upon exposure to crystal. Utilizing Vhl+/mu mouse model, depletion of VHL exacerbated kidney inflammatory injury during nephrolithiasis. Conversely, overexpression of VHL limited crystal-induced lipid peroxidation and ferroptosis in a BICD2-depdendent manner. Mechanistically, VHL interacted with the cargo adaptor BICD2 and promoted itsd K48-linked poly-ubiquitination, consequently resulting in the proteasomal degradation of BICD2. Through promoting STAT1 nuclear translocation, BICD2 facilitated IFNγ signaling transduction and enhanced IFNγ-mediated suppression of cystine/glutamate antiporter system Xc-, eventually increasing cell sensitivity to ferroptosis. Moreover, we found that the BRAF inhibitor impaired the association of VHL with BICD2 through triggering BICD2 phosphorylation, ultimately causing severe ferroptosis and nephrotoxicity. Collectively, our results uncover the important role of VHL/BICD2/STAT1 axis in crystal kidney injury and provide a potential therapeutic target for treatment and prevention of renal inflammation and drug-induced nephrotoxicity.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Nefrolitíase , Animais , Camundongos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Rim/patologia , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/metabolismo , Nefrolitíase/metabolismo
19.
Cancer Med ; 12(17): 18078-18097, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563971

RESUMO

BACKGROUND: Ubiquitin-conjugating enzyme E2S (UBE2S), an E2 enzyme, is associated with the development of various tumors and exerts oncogenic activities. UBE2S is overexpressed in tumors, including hepatocellular carcinoma (HCC). However, the key molecular mechanisms of UBE2S in HCC still need additional research. The aim of this study was to explore the role of UBE2S in HCC. METHODS: The expression levels of UBE2S in HCC tissues and cells were detected by western blot analysis, quantitative real-time polymerase chain reaction analysis (qRT-PCR), and immunohistochemistry (IHC). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, colony formation assay transwell assay, and animal models were used to detect the proliferation and migration ability of HCC cells. Western blot analysis, qRT-PCR, immunofluorescence, small-interfering RNA (siRNA), and plasmid transfection and coimmunoprecipitation (Co-IP) assays were performed to detect the interaction among UBE2S, von Hippel-Lindau (VHL), hypoxia-inducible factor 1-alpha (HIF-1α), Janus kinase-2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). RESULTS: In this study, we found that high UBE2S expression was associated with poor prognosis in HCC patients. In addition, UBE2S expression was upregulated in HCC tissues and cell lines. Knockdown of UBE2S inhibited the proliferation and migration of HCC cells in vitro and in vivo by directly interacting with VHL to downregulate the HIF-1α and JAK2/STAT3 signaling pathways. Accordingly, overexpression of UBE2S significantly enhanced the proliferation and migration of HCC cells in vitro via VHL to upregulate HIF-1α and JAK2/STAT3 signaling pathways. Furthermore, we found that downregulation of UBE2S expression enhanced the sensitivity of HCC cells to sorafenib in vivo and in vitro. CONCLUSION: UBE2S enhances malignant properties via the VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and reduces sensitivity to sorafenib in HCC. The findings of this study may open a new approach for HCC diagnosis and provide a potential option for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
20.
Mol Diagn Ther ; 27(6): 741-752, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587253

RESUMO

BACKGROUND: Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumor syndrome with an incidence of approximately 1/36,000. VHL disease-associated clear cell renal cell carcinoma (ccRCC) is the most common congenital RCC. Although recent advances in treating RCC have improved the long-term prognosis of patients with VHL disease, kidney cancer is still the leading cause of death in these patients. Therefore, finding new targets for diagnosing and treating VHL disease-associated ccRCC is still essential. METHODS: In this study, we collected matched tumor tissues and normal samples from 25 patients with VHL disease-associated ccRCC, diagnosed and surgically treated in the Department of Urology, Peking University First Hospital. After screening, we performed whole genome bisulfite sequencing (WGBS) on 23 pairs of tissues and RNA-seq on 6 pairs of tissues. And we also compared the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the The Cancer Genome Atlas (TCGA) public database RESULTS: We found that the methylation level of VHL disease-associated ccRCC tumor tissues was significantly lower than that of normal tissues. The tumor tissues showed a difference in the copy number of 3p loss and 5q and 7q gain compared with normal tissues. We integrated RNA-seq and WGBS data to reveal methylation candidate genes associated with VHL disease-associated ccRCC; our results showed 124 hypermethylated and downregulated genes, and 245 hypomethylated and upregulated genes. By comparing the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the TCGA public database, we found that the major pathways of differential gene enrichment differed between them. CONCLUSIONS: Our study mapped the multiomics of copy number variation, methylation and mRNA level changes in tumor and normal tissues of clear cell renal cell carcinoma with VHL syndrome, which provides a solid foundation for the mechanistic study, biomarker screening, and therapeutic target discovery of clear cell renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Doença de von Hippel-Lindau/genética , Transcriptoma , Variações do Número de Cópias de DNA , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias Renais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...